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Abstract

Immune checkpoint blockade of signaling pathways such as PD-1/PD-L1 has recently

opened up a new avenue for highly efficient immunotherapeutic strategies to treat

cancer. Since tumor microenvironments are characterized by lower pH (5.5-7.0), pH-

dependent protein-ligand interactions can be exploited as efficient means to regulate

drug affinity and specificity for a variety of malignancies. In this article, we investigate

the mechanism and kinetics of pH-dependent binding and unbinding processes for the

PD-1/PD-L1 checkpoint pair employing classical molecular dynamics simulations. Two

representative pH levels corresponding to circumneutral physiological conditions of

blood (pH 7.4) and acidic tumor microenvironment (pH 5.5) are considered. Our calcu-

lations demonstrate that pH plays a key role in protein-ligand interactions with small

pH changes leading to several orders of magnitude increase in binding affinity. By iden-

tifying the binding pocket in the PD-1/PD-L1 complex, we show a pivotal role of the

His68 protonation state of PD-1in the complex stabilization at low pH. The results on

the reaction rate constants are in qualitative agreement with available experimental

data. The obtained molecular details are important for further engineering of binding/

unbinding kinetics to formulate more efficient immune checkpoint blockade strategies.
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1 | INTRODUCTION

Cancer cells can dampen or circumvent immune responses by activa-

tion of inhibitory checkpoint proteins. It was demonstrated that such

immune-privileged microenvironment can be destroyed and antitumor

function of immune cells can be restored through blocking the inter-

action between cancer and immune cell proteins.1-4 This approach

(a.k.a. immune checkpoint blockade) has recently revolutionized can-

cer immunotherapy leading to several FDA-approved drugs and was

celebrated by the 2018 Nobel Prize in Medicine. Being a giant leap

forward in cancer treatment, immune checkpoint blockade is one of

the most prominent examples of enormous variability in patient

responses to therapeutics. A fraction of patients even with metastatic

tumors eliciting continued durable disease control has grown in recent

years across a number of malignancies, but durable responses are still

limited to a minority of patients.4-6 Although fundamental causes for a

huge range of therapeutic sensitivity are the subject of intense

research, mechanistic understanding of checkpoint blockade and rea-

sons for tumor immune rejection are still lacking being significantly

outpaced by clinical research.

At the microscopic level, specifics of molecular interactions

between checkpoint proteins and drugs should play an important role

in defining the magnitude of immune response and drug resistance

among patients. Among various factors controlling protein functions

in tissues, the pH level is a key variable that can strongly affect

receptor-ligand binding. On the molecular level, not only pH changes

define the protonation state of amino acid residues, but also it may

induce important conformational transitions affecting stability of pro-

tein complexes.7-9 Since low pH (5.5-7) is one of the hallmarks of

tumor microenvironment, pH-dependent receptor-ligand interactions
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can be utilized to regulate binding/unbinding mechanisms and drug

residence times in checkpoint blockade.

Prior experiments have indeed demonstrated the prominent role

of reaction pH on binding affinity, for example, for antibodies against

the IL-6 receptor at pH 6.0-7.4.10,11 Another critical aspect translating

to specificity of protein binding is protein mutations that can lead to

modified interactions at the protein/ligand interface. For instance, it

was revealed that only a single amino acid substitution (A132L) in the

immune checkpoint programmed cell death protein-1 (PD-1) results in

additional van der Waals contacts with its ligands PD-L1 and PD-L2

enhancing the binding affinity by 45- and 30-fold, respectively, com-

pared to the wild type.12 The presence of up to 10 amino acid substi-

tutions was demonstrated to lead to a binding enhancement as large

as 40 000-fold.13 Full realization of such an outstanding tuning capac-

ity for immune system activation through inhibition of checkpoints

requires more detailed atomistic understanding of the role of specific

protein-ligand interactions underlying checkpoint blockade. This

knowledge will constitute a molecular basis for guiding the develop-

ment of selective pH-dependent immune-modulating agents against

cancer with milder adverse effects.

In this study, we elucidate the molecular details of pH-dependent

binding and unbinding processes between PD-1 and PD-L1 that

emerged as key targets for checkpoint blockade. To this end, we carry

out a series of classical molecular dynamics (MD) simulations

employing a combination of enhanced free-energy sampling tech-

niques (metadynamics and umbrella sampling) to assess free energy

barriers and associated rate constants for both binding and unbinding

reactions. The obtained results qualitatively agree with recent experi-

ments examining binding interactions between the high-affinity con-

sensus (HAC) PD-1 mutant and its ligand PD-L1 as a function of pH.13

2 | COMPUTATIONAL METHODOLOGY

To model interactions between the HAC PD-1 and PD-L1 proteins,13

we used the 5IUS crystal structure from Protein Data Bank. The miss-

ing residues, including protein tails and the PD1.86-88 loop, were

recovered using the Modeller software.14 As we show below, these

residues are located far from the binding pocket and therefore are not

directly involved in binding/unbinding reaction. Since the C2 domain

of the PD-L1 protein also does not participate in binding with PD-1,

residues 133-229 were removed (see Figure 1) to decrease the simu-

lation cell size. The resulting complex was found to be stable and the

initial binding pose is preserved after equilibration in an aqueous envi-

ronment according to the root mean square displacement of heavy

atoms as discussed below. The protonation state under certain pH

value was determined using PropKa 3.1 package.15 All MD simulations

were carried out using the Gromacs 2016.3 simulation package16 with

Amber03 force field.17

The proteins were solvated with �17 000 TIP3P water molecules

in a rectangle box, resulting in �55 700 atoms in total. The long-range

electrostatic interactions were calculated by the means of the particle

mesh Ewald decomposition algorithm. Cutoffs of 10 Å for electro-

static and vdW interactions were used to perform calculations with

periodic boundary conditions. All hydrogen bonds were constrained

using the LINCS algorithm allowing a simulation time step of 2 fs. The

V-rescale thermostat18 and Parrinello-Rahman pressure coupling19

were applied during simulations to maintain temperature of 300 K

and 1 bar pressure. The system geometry was first optimized until the

forces become less than 1000 kJ/mol/nm. Then, the system was grad-

ually heated from 0 to 300 K in the NVT ensemble with constrained

solute atoms during 1 ns, after which the system underwent an NPT

simulation of 20 ns for equilibration. After equilibration, the system

was simulated using the NPT ensemble for 100 ns.

Infrequent metadynamics simulations were employed to estimate

unbinding reaction rates (koff) as implemented in the PLUMED 1.3

package.20 The approach is based on the periodic biasing of collective

variables (CVs) in order to increase the probability of transitions

between metastable states.21 We use the solvation state of binding

pocket (the number of water molecules forming hydrogen bonds with

the active sites listed in Table 1) and the center-of-mass distance

between binding pocket of protein and its ligand as CVs to run well-

tempered metadynamics simulations. The Gaussian hills were added

every 8 ps with an initial height of 1.8 kJ/mol, width of 0.02 and 0.05

F IGURE 1 A, Crystal structure
(PDB ID: 5IUS) of the HAC PD-1/PD-
L1 complex with a 2:2 binding
stoichiometry13 and (B) solution
structure with a 1:1 binding
stoichiometry used in the present
work as a structural model for
molecular dynamics simulations
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for distance and solvation state CVs, correspondingly, and a bias fac-

tor of 10. These computational parameters are similar to several previ-

ous biomolecular modeling studies of unbinding kinetics employing

the infrequent metadynamics formalism.21 Several independent simu-

lations were carried out to collect statistics and decrease uncertainty.

The binding and unbinding rates were estimated assuming that its

characteristic time follows a Poisson distribution. The unbinding time

was directly calculated from metadynamics trajectories and corrected

using the acceleration factor ev(s,t)/KT, where V (s,t) is the time-

dependent bias potential. A similar computational scheme to calculate

binding/unbinding kinetics has been recently applied in a number of

works.22,23 The binding barriers ΔGon were estimated based on the

first crossing between the bound and unbound states (USs). The US

was defined as a state with a distance between PD-l and PD-L1

exceeding �1.1 and �1.2 nm for blood and acidic pH, correspond-

ingly. The average ΔGon value was calculated based on several inde-

pendent trajectories, and the uncertainty was determined using

standard error analysis.

To estimate the binding rate (kon) and dissociation (Kd) con-

stants, we complimented our metadynamics calculations with

umbrella sampling simulations. The binding rate kon was estimated

from the binding energy (ΔG) and unbinding rate constant (koff)

assuming two-state kinetics.22 A PD-L1 ligand was pulled along the

reaction coordinate (the distance between centers of mass for the

binding pockets of PD-1 and PD-L1) with a velocity of

0.01 nm�ns−1 and a force constant of 1000 kJ�mol−1�nm2. From this

steered MD trajectory, 12 windows were extracted for the umbrella

sampling with spacing between adjacent windows of 0.1 nm (from

0.7 to 1.8 nm along the reaction coordinate). The system in each

window was then equilibrated for 10 ns, followed by a 30-ns pro-

duction run (the force constant was set to 3000 kJ�mol−1�nm2). The

potential of mean force was calculated using the weighted histo-

gram analysis method24 as implemented in the Gromacs 2016.3

package.

TABLE 1 Average distances between centers of mass of the
residues at the HAC PD-1/PD-L1 interface for two pH levels

Binding pocket
residues

Average
distance, Å

Average
distance, Å

(PD-1 - PD-L1) Blood pH Acidic pH

His68-Asp122 2.21 ± 0.15 1.85 ± 0.02

Thr78-Asp122 2.52 ± 0.44 2.19 ± 0.05

Glu136-Tyr123 3.07 ± 0.11 2.71 ± 0.09

Glu136-Arg125 5.34 ± 2.10 6.31 ± 3.3

Glu70-Arg125 4.02 ± 2.23 5.53 ± 3.1

F IGURE 2 Structure of the HAC PD-1/PD-L1 binding pocket in the (A) bound state and (B) unbound state. C, Root mean square deviations
from molecular dynamics trajectories for all the non-hydrogen atoms in the PD-1/PD-L1 complex and (D) evolution of distances between the N
group of Hip68 in PD-1 and O of Asp122 in PD-L1 for blood and acidic pH levels [Color figure can be viewed at wileyonlinelibrary.com]
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3 | RESULTS AND DISCUSSION

To examine the binding properties of the PD-1/PD-L1 protein-ligand

pair, we choose a recently engineered ultra-high-affinity mutant of

PD-1 (HAC) that exhibits up to 40 000-fold enhanced affinity for PD-

L1 relative to the wild-type human PD-1.13 An X-ray crystallographic

analysis of the HAC PD-1/PD-L1 complex was previously carried out

to obtain the atomic structure with a 2.9 Å resolution (PDB ID:

5IUS).13 It was shown that the crystallized complex exhibits a 2:2

binding stoichiometry, whereas in solution the complex was con-

firmed to have a 1:1 stoichiometry that is chosen for the present

study (see Figure 1). The missing residues were recovered using the

Modeller software14 to make both halves of the protein identical. To

assign protonation states of the titratable residues, we use pKa values

obtained in the propKa software.15 The protonation states are deter-

mined for the two representative pH levels: pH 5.5 mimicking the

extracellular environment of tumors25-27 and pH 7.4 corresponding to

normal tissues.27 In this study, we define these pH levels as acidic pH

and blood pH, respectively.

Our analysis of the protonation diagram for the PD-1/PD-L1

complex indicates that several amino acids (namely, His64, His68, and

His107 of PD-1, and Glu58, and His78 of PD-L1) should change the

protonation states in the pH range of 5.5-7.4 based on their pKa

values (see Movie S1 for more details). Figure 2 depicts the atomic

structures of the binding pocket for the PD-1/PD-L1 complex in both

bound (A) and unbound (B) configurations. Figure 2C shows the time

evolution of the root mean square deviation over a 100 ns MD pro-

duction trajectory for the bound state (BS; A) demonstrating stability

of the complex under both pH conditions.

We next identify the residue interaction network formed at the

interface between PD-1 and PD-L1. In agreement with previous

studies,28 our calculations show that the binding pocket between PD-

1 and PD-L1 is primarily comprised of His68, Glu70, Thr78, and

Glu136 from the PD-1 side and Asp122, Tyr123, Arg125, and Lys124

from the PD-L1 side (see Figure 2 for the overall structure and

Table 1 for the average distances between the residues). While other

residues should also contribute to the complex stability, the distances

between the corresponding hot spots are found to fluctuate quite sig-

nificantly suggesting much weaker interactions. The computed aver-

age distances between the residues in the binding pocket (Table 1)

indicate that the stability of the PD-1/PD-L1 complex indeed depends

on the considered pH level. For example, it is seen that the distance

between protonated His68.PD-1 and Asp122.PD-1 decreases from

around 2.21 Å under circumneutral conditions to 1.85 Å in acidic

environment. The interaction between Thr78.PD1 and Asp122.PD-L1

also contributes to the stability of the binding configuration but are

characterized by larger average distances. Based on this structural

information, it is clear that pH changes have an effect on binding

interactions whose strength will be quantified below using free energy

calculations.

F IGURE 3 A and B, Representative two-dimensional free energy surfaces for unbinding process as a function of distance between PD-1 and
PD-L1 and solvation state of the binding pocket. Bound and unbound states are shown in Figure 2A,B and stand for bound and unbound states,
correspondingly. C and D, Cumulative distribution functions (CDF) for unbinding times fitted as a Poisson process for two pH levels [Color figure
can be viewed at wileyonlinelibrary.com]
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Having equilibrated the PD-1/PD-L1 system in the BS, we next

undertake kinetic simulations employing enhanced sampling free

energy methods. First, we examine the unbinding process by means

of metadynamics approach based on an infrequent deposition of the

repulsive Gaussians in the CV space.20,21 By using the distance

between the centers of mass of the residues from the PD-1/PD-L1

binding pocket as CV1 and solvation state of the ligand as CV2 (see

Section 2), we investigate the free energy landscape of PD-1/PD-L1

unbinding and directly compute the residence time of the protein-

ligand pair in the BS. The combination of these two CVs was previ-

ously demonstrated to be important for accurate description of the

protein-ligand unbinding process in metadynamics.23

The representative free energy maps for unbinding process for

acidic and blood pH levels are shown in Figure 3, while Movie S1 illus-

trates the simulated dynamics of unbinding reaction. It is found that

the BS for both pH cases is characterized by the CV1 value of

�0.7 nm and minimal solvation (CV2) that can include one water mol-

ecule on average due to spontaneous destabilization of bonds

between several hot spots as discussed above. Upon unbinding, water

molecules enter the binding pocket space leading to an increase in dis-

tances between the hot spots. After CV1 reaches �1.2 nm, the sys-

tem falls into the basin of the US, as seen from Figure 3A,B. In this

US, the hot spots of both the protein and the ligand are solvated and

separated from each other by several water molecules. After reaching

the US, the ligand diffuses easily either into the solvent or back to the

protein (as shown in Movie S1). The average activation barriers

for the unbinding process as estimated from metadynamics are

44 ± 7 kJ/mol for circumneutral pH and 57 ± 10 kJ/mol for acidic pH.

We next evaluate the lifetimes for the PD-1/PD-L1 pair in the

bound pose at different pH levels over multiple state-to-state

(BS ! US) metadynamics trajectories using acceleration factor as

described in Section 2 and shown in Movie S1. The average unbinding

time is computed by fitting the obtained distribution of residence

times in the BS with a Poisson function (see Figure 3C,D). We find

tpoisson to be 4.09 and 130.8 seconds, resulting in unbinding rate con-

stants (koff) of 0.24 second−1 and 7.6�10−3 second−1 for blood and

acidic pH, respectively. The reliability of residence time statistics is

analyzed using the Kolmogorov-Smirnov test yielding the P values of

.68 and .84 thereby confirming that the distribution is Poissonian.

Thus, our results reveal two orders of magnitude difference in koff

between blood and acidic pH. This is in qualitative agreement with

recent experimental estimates that, however, result in smaller koff

values.13

In order to evaluate the thermodynamic equilibrium dissociation

constant (Kd = koff/kon), we need to obtain kon values by simulating the

binding process between PD-1 and PD-L1. Such simulations within

the metadynamics approach can be rather computationally challeng-

ing as the system in the US has the flexibility of exploring a multitude

of possible solvated states that may frustrate evaluation of binding

F IGURE 4 Free energy profiles of PD-1 and PD-L1 binding as
computed in umbrella sampling for (A) blood pH and (B) acidic pH
[Color figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Comparison of simulated
and experimental data on the rate
constants for HAC PD-1/PD-L1

Simulation Experiment13

Blood pH Acidic pH Blood pH Acidic pH

koff, s
–1 0.24 7.6�10−3 3.4�10−4 Not measurable

kon, 106 M�s–1– 27.57 1061.31 2.61 118

Kd, pM 12 404.36 6.69 127 —

Note: Experimental values are taken from Ref.13 and correspond to pH 7.4 and 5.5 for blood and acidic

pH levels, respectively.
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free energies. To improve the efficiency of sampling of the ligand/pro-

tein binding pathway, a number of approaches29 have been previously

employed including Brownian dynamics,30 funnel metadynamics,31

and thermodynamic integration.22,32 Here, to estimate the binding

rate constants, we choose to apply the umbrella sampling technique24

(see Section 2 for more details). To compute the free energy profiles

of the binding process, the distance between centers of masses of the

protein and its ligand residues in the binding pocket is chosen as the

CV, similarly to CV1 in our metadynamics simulations.

Figure 4 shows the simulated free energy profiles of the reaction

for two pH levels. The computed unbinding free energy barriers of

47.9 and 63.3 kJ/mol for blood and acidic pH, respectively, agree

fairly well with the metadynamics estimates (44 ± 7 and 57 ± 10 kJ/

mol, correspondingly). This allows us to conclude that relatively large

equilibration times for each window in umbrella sampling simulations

helped improve solvation of the binding pocket and force averaging to

estimate the binding affinity with a single CV. The activation barriers

of binding are computed to be 7.5 and 6.2 kJ/mol for circumneutral

and acidic pH, correspondingly. In addition, the free energy difference

ΔG of −40.4 kJ/mol between the BS and US at neutral pH agrees very

well with the value of −43.1 kJ/mol estimated using isothermal calo-

rimetry on the HAC PD-1/PD-L1 system.13 These calorimetric mea-

surements have also demonstrated that the binding process between

HAC PD-1 and PD-L1 is enthalpically driven, in contrast to the results

obtained for the wild-type proteins. Using the computed binding

energy, we then estimate the kon values for a standard reference con-

centration of 1 M assuming two-state kinetics. Finally, the dissocia-

tion constant Kd is assessed for both pH levels as presented in

Table 2. Overall, the obtained computational results posit strong pH

sensitivity of the PD-1/PD-L1 binding kinetics, in overall agreement

with recent experimental studies.

4 | CONCLUSIONS

Using atomistic MD simulations, we have provided atomistic insights

into the mechanism of PD-1/PD-L1 interaction and demonstrated

that pH level could significantly affect the binding affinity of immune

checkpoint proteins. In particular, we have shown that electrostatic

interactions between the His-68.PD-1 and Asp122.PD-L1 residues

give a significant contribution to binding affinity, with protonation

state of imidazole ring playing a key role in protein binding/unbinding

process. Our computational findings are in good qualitative agreement

with recent experimental measurements,13 while the absolute bind-

ing/unbinding rates are overestimated (see Table 2).

The discrepancy between calculated and experimental residence

times could be due to several factors. First, the protonation states of

binding counterparts are fixed during simulation trajectories, while

under real experimental conditions there must be a dynamic equilib-

rium. pKa values of titratable groups are typically determined by

empirical prediction methods that are unable to capture the dynamics

of protonation state changes arising as a response to the occurring

reaction and possible conformational changes. Another set of

uncertainties was shown to be inherent to the computational methods

employed to evaluate binding/unbinding kinetics29,33 and includes

errors associated with the choice of CVs to sample free energy land-

scape of a reaction, as well as approximations related to the applied

classical force fields. The use of quantum chemical calculations to

treat regions associated with active binding sites, for example, within

the hybrid quantum mechanics/molecular mechanics approach could

improve accuracy of kinetic simulations.

Based on the ability of employed computational methods to pro-

vide a qualitatively correct picture of the pH-sensitive binding for

immune checkpoint proteins, this study should serve as a good

starting point for the development of more efficient immune check-

point blockade strategies based on pH dependent interaction

between proteins and their ligands. Introduction of more histidine res-

idues in the binding pocket emerges as a natural choice for tuning pH-

dependent binding equilibrium and can also help explain variable

patient responses to immunotherapies. It is expected that with the aid

of available libraries of biocompatible scaffold proteins, the hotspot

interfaces with desired pH-sensitive molecular footprints could be

designed using computational screening methods.34
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