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ABSTRACT: Electrical double-layer capacitance (CDL) measurements are among
the key experiments in physical electrochemistry aimed to understand the properties
of electrified solid/liquid interfaces. CDL serves as a critical parameter for developing
physical models of electrochemical interfaces. Palladium (Pd) electrodes are among
the most widely used functional materials in many applications, including
(electro)catalysis. In this work, we report on double-layer capacitances of the
basal plane Pd(111), Pd(100), and Pd(110) electrodes in aqueous HClO4
electrolytes measured using electrochemical impedance spectroscopy. Importantly,
we find that the CDL values estimated at the minima of the capacitance vs electrode
potential curves can be correlated with the density-functional-theory (DFT)-
calculated adsorption energies for water molecules and the coordination of
electrode surface atoms. Our results thus suggest that it might be possible to find
simple descriptors of the electrical double layer (EDL) analogous to those used for
functional electrode materials. Taken together, such descriptors could be employed for efficient high-throughput screening of various
electrode/electrolyte interfaces, such as in supercapacitor and electrocatalytic systems.

■ INTRODUCTION

The knowledge of basic parameters characterizing the
electrified solid/liquid interface is of great importance to
understanding its functionality, such as catalytic properties.1−6

The capacitance of the electrical double layer (CDL) is one of
those critical parameters.7 For example, the position of the CDL
minima is often associated with the so-called potential of zero
charge or maximum entropy, indicating which electrolyte
compositions are beneficial for promoting electrocatalytic
reactions.8−14 However, despite their importance, the CDL
values of model single-crystal electrodes are available only for
a relatively small amount of systems (see, e.g.,15−17). This can
be partly explained by the challenges in preparing single-crystal
electrodes and fundamental issues related to the measure-
ments, for example, due to the so-called frequency dispersion
of the double-layer capacitance,18−20 even for flat single-crystal
electrodes in electrolytes, which do not contain specifically
adsorbing ions.
Palladium(Pd) is a versatile material with a wide range of

applications. In electrocatalysis, it is considered among the so-
called energy materials, catalyzing the hydrogen evolution,
hydrogen oxidation, and oxygen reduction reactions.21 In this
work, we report on the double-layer capacitances of the basal
plane Pd(hkl) single-crystal electrodes, namely, Pd(111),
Pd(100), and Pd(110). The utilized electrolyte is 0.1 M
HClO4, a standard medium used in multiple electrocatalytic
and other physicochemical applications. Furthermore, we

establish the hypothesis on the intrinsic correlations between
the energy adsorption characteristics of electrolyte compo-
nents, the structure of the Pd(hkl) surfaces, and the double-
layer capacitances found close to the potential of zero charge
(PZC). We suggest that these correlations can be used to
improve or supplement the rational design of new materials for
various energy conversion and storage applications.

■ EXPERIMENTAL SECTION
The Pd(111), Pd(100), and Pd(110) disk electrodes (Ø: 5
mm, 99.999%, MaTecK, Jülich, Germany) were oriented more
precisely than 0.05° and polished to a nominal roughness of
less than 30 nm. Before the cyclic voltammetric (CV) and
electrochemical impedance spectroscopy (EIS) experiments,
the crystals were annealed for 2 h in an Ar (5.0, Westfalen,
Germany) atmosphere at 950 °C in a furnace (Heraeus
Instruments RO 7/50, Germany), cooled down overnight, and
transferred into a standard three-electrode cell. To avoid an
oxidation during the transportation by exposing the sample to
the air, the electrode surface was protected by a droplet of
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ultrapure water (Evoqua Milli-Q,18.2 MΩ cm). Electro-
chemical scanning tunneling microscopy (EC-STM) imaging
was performed under potential control (0.0 V vs platinum) to
prevent electrochemical surface reactions. In all experiments,
0.1 M HClO4 (Suprapur, Merck, Germany) was used as an
electrolyte. The measurements were performed using a VSP-
300 potentiostat (BioLogic, France).
Electrochemical Voltammetric and Impedance Meas-

urements. All glassware and Teflon cell parts were cleaned in
a piranha solution, a 1:2 mixture of 30% H2O2 (Suprapur,
Merck, Germany) and 96% H2SO4 (Suprapur, Merck,
Germany), and treated/washed with boiling ultrapure Milli-
Q water with a resistivity of 18.2 MΩ·cm before the
experiments. The standard three-electrode configuration cell
was operated with a mercury-mercurous sulfate electrode
(MMS) (SI Analytics, Germany) and Pd wire (Ø 0.25 mm,
99.95%, MaTecK, Germany) as the reference and counter
electrode, respectively. A starting potential of 0.57 VRHE was
used to avoid possible electrochemical surface processes before

the actual measurement started. The quality of the annealed
single crystalline surface was verified by cyclic voltammetry
(CVs) in Ar-saturated 0.1 M HClO4 at a potential range
between 0.2 and 1.2 VRHE and a scan rate of 50 mV s−1.
The electrochemical impedance spectroscopy (EIS) meas-

urements were performed within a frequency range between 50
kHz and 1 Hz using a perturbation amplitude of 10 mV. To
suppress possible potentiostat- and reference electrode-related
artifacts, a shunt capacitor was connected between the
reference and a dummy electrode. The dummy electrode was
placed close to the Luggin capillary. For the EIS data analysis,
the housemade software “EIS Spectrum Analyzer 1.3” was
used.22,23 The quality of the recorded spectra was ensured by a
Krammer−Kroenig check.

Electrochemical Scanning Tunneling Microscopy.
Electrochemical scanning tunneling microscopy (EC-STM)
imaging was performed using a Nanoscope III SPM Multi-
mode (Veeco Instruments), connected to a Veeco Nanoscope
Universal bipotentiostat and a Nanoscope IIID controller in

Figure 1. (A−C) Typical cyclic voltammograms (first cycles) and (D−F) corresponding EC-STM pictures of freshly annealed (A, D) Pd(111), (B,
E) Pd(100), and (C, F) Pd(110) in 0.1 M HClO4. Scanning rate for CVs (A−C): 50 mV s−1.
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0.1 M HClO4. For all EC-STM measurements, the single
crystals were clamped between a stainless steel plate and a
Teflon ring acting as the case of the miniature electrochemical
cell. A Pt wire (Ø 0.5 mm, 99.99%, MaTecK, Germany) was
used as a quasi-reference electrode and a curled Pd wire (Ø
0.25 mm, 99.95%, MaTecK, Germany) as the counter
electrode. The STM-tips were mechanically cut from a Pt/Ir
wire (Pt80/Ir20, Ø 0.25, Goodfellow, Germany) and insulated
by Apiezon wax. Detailed information on this technique can be
found in refs 24−27. The visualization of the EC-STM data
was implemented by using WSxM 5.0 Develop 9.4.28

Computational Approach. The atomic structures of the
Pd surfaces with converged computational parameters were
taken from the Materials Project29 and used for adsorption
calculations.
Ab initio simulations were performed using the density-

functional-theory (DFT) plane-wave VASP code.30−33 The
revised Perdew−Burke−Ernzerhof (RPBE) exchange-correla-
tion functional34 together with the PAW Pd, O, and H
potentials35 was employed. The D3 approach within Grimme’s
formalism was used to correct for nonlocal van der Waals
interactions.36,37 A cutoff energy of 520 eV was employed in all
calculations. The structures were optimized until the total
energies and atomic forces were converged to within 10−5 eV
and 0.03 eV/Å, respectively. The (100), (110), and (111)
surfaces of Pd were modeled using the periodic slabs consisting
of eight, eight, and ten atomic layers, respectively, taken from
the Materials Project.29 The dimensions of the cells employed
to estimate the adsorption energies for H2O, H, and OH
species were 8.38 × 8.38 Å2, 8.38 × 11.86 Å2, and 8.38 × 8.38
Å2, respectively, with a vacuum gap of at least 13 Å. The
Monkhorst−Pack k-point mesh of 5 x 5 x 1 was used in all slab
calculations. The adsorption energies were computed consid-
ering water, proton, and hydroxyl species as adsorbates. All

calculations were performed for charge-neutral supercells. The
negative adsorption energies correspond to attractive inter-
actions between the adsorbate and the metal surface.
All potentials presented in this work for CV, EIS data, and

DFT calculations have been referred to the reversible hydrogen
electrode (RHE).

■ RESULTS AND DISCUSSION
Figure 1 summarizes the results of voltammetric and EC-STM
characterization of the Pd(111), Pd(100), and Pd(110)
electrodes. The samples demonstrate typical CV profiles
(Figure 1A−C)38,39 with (i) the underpotential deposition of
the hydrogen region between ca. 0.2 and 0.5 V, (ii) the double-
layer region, and (iii) the region of adsorption of the
oxygenated species at the electrode potentials more positive
than ca. 0.6 V. The corresponding EC-STM images (Figure
1D−F) generally reveal smooth surfaces with atomically flat
terraces consisting of thousands of Pd atoms.
Figure 2 shows typical examples of the electrochemical

impedance spectroscopy data of the investigated palladium
electrodes. The equivalent electric circuit (EEC) shown in
Figure 2A was found to adequately describe the impedance
response of the systems within the double-layer regions
(further analysis details are shown in Figure S1 of the
Supporting Information). It consists of two elements: the
uncompensated resistance associated with the electrolyte, RU,
and the impedance of the electrical double layer, ZDL, given by
the formula presented in Figure 2A. With the exponent n
approaching 1, ZDL is close to the impedance of an ideal
capacitance. Therefore, the corresponding parameter C′DL is
further considered as the double-layer capacitance in this
study.
The dependences C′DL vs (E The dependence C′DL vs (E vs

RHE)) for the three freshly annealed Pd(hkl) electrodes are

Figure 2. Characterization of Pd(hkl) electrodes using electrochemical impedance spectroscopy. (A) Equivalent electric circuit. (B) Dependences
of the double-layer capacitance on the electrode potential. (C−E) Examples of impedance spectra together with the fitting (solid lines) to the
equivalent circuit for the (C) Pd(111), (D) Pd(100), and (E) Pd(110) electrodes.
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shown in Figure 2B in the potential regions where no
significant side electrochemical reactions occur. Typical fitting
examples of the admittance spectra to the EEC are shown in
Figure 2C−E, confirming that the model describes the
experimental data pretty well, with the root-mean-square
deviations of less than 2%. It is remarkable in Figure 2B that
the double-layer capacitances are drastically different for all
three palladium electrodes, considering that they represent
examples of very flat model surfaces. In each of the curves in
Figure 2B, one can identify the C′DL minima, CDL,min, at
different electrode potentials and with different corresponding
capacitance values. These minima should typically be close to
the so-called potentials of zero charges (PZCs), where the net
charge of the surface approaches zero.
Somewhat surprisingly, even close to the PZC point, the

double-layer capacitances drastically depend on the basal plane
surface structure. While classical and recent40 theories of the
double layer do not consider the nature of the electrode and its
structure, the experiments show that the electrical double-layer
(EDL) capacitance significantly depends not only on the
electrolyte composition but also on the electrode structure and
its chemical composition.2,3 Therefore, elucidation of the
structure-capacitance relations is an essential part of develop-
ing more comprehensive theories of the double layer. As
CDL,min also plays a significant role in understanding the
electrified interface and the electrocatalytic interfacial charge
transfer, in the following, we analyze these data in more detail.
First of all, we hypothesize that CDL,min reflects the intrinsic

interactions between the surface and the electrolyte
components with minimal influence of the excessive electrode

charge. DFT calculations were used to quantify the adsorption
energy for the most important strongly interacting species.
Three types of species were considered: water molecules, H+,
and OH− species. The results of these calculations are
summarized in Figure 3.
It can be seen that H+ species are characterized by the

strongest adsorption on the top sites of the Pd surfaces,
followed by OH− and then H2O. Moreover, the corresponding
Pd-H and Pd-O bond lengths for the H+ and OH− adsorbates
are almost unaffected by the surface structure (<1%), while for
H2O, the bond length is significantly stronger influenced by the
surface structure. Therefore, one can assume that the most
critical interacting species for the CDL analysis are water
molecules. Further, they are likely to significantly impact the
overall thickness of the inner Helmholz layer in the double-
layer structure. In turn, this should be reflected by variations of
the double-layer capacitance for different surfaces.
For the detailed study of this effect, it is essential to

parametrize the Pd(hkl) structures to correlate structure-
related information with the double-layer capacitances. One
can do that using the so-called generalized coordination
numbers (GCNs).41−43 GCN is a parameter that can be
considered as a simple quantitative measure related to the
structure linking it with an electron density function at the
surface. Therefore, GCN is a useful descriptor for the affinity
of the surface to the electrolyte components. It considers the
first and the second nearest neighbors of the accessible
adsorption sites and can be calculated using the eq 1, weighting
each first-nearest-neighbor atom (j) by its conventional
coordination number (cn(j))43

Figure 3. (A−C) Adsorbate configurations (top view) and DFT-calculated binding energies for H2O, hydroxyl, and H+ species at Pd(hkl) surfaces
with the corresponding Pd−O and Pd−H bond lengths indicated in the pictures.
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∑= + −S cn j cnGCN (1 ) ( )/1
max

Ä
Ç
ÅÅÅÅÅ

É
Ö
ÑÑÑÑÑ (1)

where S is the percentage of strain (negative or positive for
compressive or tensile strain) and cnmax is the maximum
number of the direct neighbors in the bulk phase, which is
defined as 12 on fcc and hcp crystals, and as 8 for the bcc ones
(examples of GCN calculations for the 111, 100, and 110
palladium surfaces are given in the Supporting Information,
Figure S2). By assuming zero strain for the freshly annealed
surfaces, one can calculate GCN(Pd111) = 7.5, GCN(Pd100) =
6.6(6), and GCN(Pd110) = 5.85.
Remarkably, the DFT-calculated binding energies for H2O

molecules scale linearly with the GCNs of the investigated
palladium planes (Figure 4A), enabling further parametrization
of the surfaces in energetic and structural terms simulta-
neously. In other words, one can use GCNs to characterize and
quantify the affinity of the surface toward electrolyte
components (in the following, only H2O is considered) in
simple terms.
To correlate the GCN with the CDL,min, consider that the

generalized coordination number is a measure of “unsaturated
surface electron density.” One can assume that the higher this
value, the lower the densities and the longer the effective
distances between the surface atoms and the first layer of water
molecules (see, e.g., Figure 3). One should also consider the
different numbers of accessible surface sites for the water
molecules per unit area, S, for different basal surfaces (see
Figure S2 in Supporting Information). Therefore, it is
reasonable to define a new function, Fe, which should be
connected to CDL,min in a first approximation

∑=F S/ GCNe (2)

Figure 4B reveals an excellent quasi-linear correlation
between CDL,min and Fe, where CDL,min increases with
decreasing∑GCN, as follows: Pd(111) < Pd(100) < Pd(110).
There must be, of course, not only purely structural reasons,

which affect the double-layer capacitances close to the
potential of zero charge. For example, one can compare the
values for the double-layer capacitances of flat Pd(111) and
Pt(111) electrodes at corresponding minima in 0.1 M HClO4

being ca. 31.7 μF/cm2 and ca. 60 μF/cm2,,44 respectively. This
is an indicator that also the chemical nature (via dissimilar
surface electronic properties) of the electrode is important, and
this requires further investigations.

■ CONCLUSIONS

In conclusion, we carried out EIS, voltammetric, and
electrochemical scanning tunneling microscopy character-
izations of the Pd(111), Pd(100), and Pd(110) electrodes.
The EIS measurements revealed a strong surface dependence
of the double-layer capacitance close to the potential of zero
charge, being ca. 31.7 μF/cm2 for Pd(111), ca. 37.7 μF/cm2 for
Pd(100), and ca. 65 μF/cm2 for Pd(110). We were also able to
correlate the capacitance data with the surface adsorption
energies for water species and the generalized coordination
numbers of the Pd surfaces. The results of this work thus
suggest that it may be possible to characterize the EDL
properties such as the double-layer capacitance using simple
physical descriptors. Further joint experiment−theory inves-
tigations are necessary to generalize the obtained results to
other electrochemical systems.
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